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Geometric approach to the Miesowicz coefficients at the region of the crystalline-nematic transition
and a universal relation for their ratio

M. Simões and S. M. Domiciano
Departamento de Fisica, Universidade Estadual de Londrina, Campus Universitario, 86051-970, Londrina (PR), Brazil

~Received 9 March 2002; published 16 December 2002!

In this work the ratios between the Miesowicz coefficients of rigid calamitic nematic liquid crystals will be
studied. It will be shown that the microscopic theory that describes these coefficients, the kinetic theory@M.
Doi and S. F. Edwards,The Theory of Polymer Dynamics~Oxford Press, New York, 1986!#, suggests that some
ratios between the Miesowicz coefficients would have a universal character, that does not depend on the
nematic material being examined. A set of experimental data has been collected from the liquid crystal
literature and, once these data are rescaled in a common temperature scale, they point to the existence of such
a universality. Nevertheless, only in the neighborhoods of the nematic-isotropic transition, do the theoretical
calculations of the kinetic theory and the experimental data predict the same profile for this universality; when
the region of the crystalline-nematic transition is approached theory and experiment present severe discrepan-
cies. The reason for this disagreement is studied and it is proposed that it results from the fact that the kinetic
theory does not take into account the packing properties of the nematic medium. A different approach to the
calculation of these ratios is proposed and it is shown that it describes the experimental data for all tempera-
tures.

DOI: 10.1103/PhysRevE.66.061703 PACS number~s!: 61.30.Gd, 61.30.Jf, 64.70.Md
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I. INTRODUCTION

In 1935 @1,2#, it was established that in the presence
external fields some liquid crystal~LC! materials could
present anisotropic viscosity, i.e., the measured value of
viscosity depends on the relative direction between an ex
nal field and the shearing plane. Nowadays, it is known t
this phenomenon has an origin in the anisotropic shape o
nematic domains; as the direction of the external field
changed the collective mean orientation of these molec
with relation to the shearing plane also changes, establis
different physical conditions to the transport of momentu
between the adjacent shearing planes. The prototype th
whose phenomenological results all microscopic mod
must explain is the ELP approach@3–8#, which, starting
from hydrodynamics considerations, shows that on these
terials the dissipation due to fluid flow must be characteri
by five different viscosity coefficients. Three of them d
scribe the three different possibilities for the relative orie
tation between external field and the shearing plane, kno
as Miesowicz’s coefficients. The other two describe the sy
metric and the antisymmetric combinations of the shear
around a nematic domain, the rotational coefficients. Th
are few theories that, starting from microscopic consid
ations, try to explain these results. The most known on
the so-called kinetic theory@9#. This theory, originally for-
mulated for polymers and extended for LCs@9–14#, is able
to give a microscopic explanation to the observed anisotr
on the LC viscosity coefficients but, as will be shown ahe
some universal relations@15# between these coefficients ca
not be correctly explained by it.

In Sec. II it will be shown that an immediate consequen
of the kinetic theory@16,17# is the fact that the ratio betwee
the Miesowicz coefficients of rigid calamitic molecule
would present a universal behavior that does not depen
1063-651X/2002/66~6!/061703~8!/$20.00 66 0617
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the particular nematic material being examined. In Sec. II
will be shown that for a broad set of nematic materials
experimental results are in agreement with the existenc
such universality, but the observed values of these data
not agree with the predictions of the kinetic theory. It will b
argued that the reason of such disagreement is that the
netic approach does not consider the geometric propertie
the packing of the nematic domains, which become imp
tant when the crystalline-nematic transition point is a
proached. In Sec. IV a definition of stress tensor that emp
sizes the role of the nematic packing@9# is used to make an
evaluation of the Miesowicz coefficients that confirms t
prediction of a universal behavior for these ratios and, w
that, the universality observed in the distribution of the e
perimental data points could be correctly explained. In s
thesis, in this work it is shown that the ratio between t
Miesowicz coefficients of rigid calamitic nematic liqui
crystal presents a universal behavior which can be expla
with the geometric properties of the packing of the nema
domains.

II. MIESOWICZ’S COEFFICIENTS AND KINETIC
THEORY

The observation of modifications on the viscosity of
LC, when the direction of an externally applied magne
field is changed, leads to the following definition for th
Miesowicz viscosity coefficients:

~i! h1 , when the long axis of the molecules is parallel
the gradient of the velocity,

~ii ! h2 , when the long axis of the molecules is parallel
the direction of the flow,

~iii ! h3 , when the long axis of the molecules is perpe
dicular to the direction of the flow and also perpendicular
the velocity gradient.

Figure 1 defines the geometry used along with this w
©2002 The American Physical Society03-1
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and illustrates, for each one of the Miesowicz coefficien
the relative orientation between the direction of the long a
of the nematic domains and the direction of the fluid flow
will be supposed that the nematic fluid is flowing along t
eW x axis and that its velocity depends only on the posit
along theeW z axis. So, it may be assumed that the fluid moti
is composed of sheets of constant velocity and, as one m
along theeW z direction, a new sheet with a different velocity
found. Hence, given a sheet, two other sheets will surro

FIG. 1. This figure defines the geometry that is used to calcu
each one of the Miesowicz coefficients in this work. The arro
give the direction of the fluid follow and the continuous variation
its length represent the variation of the fluid velocity. For ea
Miesowicz coefficient the molecular long axis has a different o
entation relative to the direction of the fluid flow. In~a! the geom-
etry of the coefficienth1 is shown, the long axis of the molecules
parallel to the gradient of the velocity. In~b! the geometry of the
coefficienth2 is shown; the long axis of the molecules is parallel
the direction of the flow. In Fig.~c! the geometry of the coefficien
h3 is shown, the long axis of the molecules is perpendicular to
direction of the flow and also perpendicular to the velocity gradie
06170
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it; one below that will try to reduce its velocity, and anoth
above that will try to increase its velocity. Now on the
sheets will be called by shearing planes. Therefore, the n
atic domains in one shearing plane interact with other
mains in the neighbor shearing planes trying to change
momentum. By definition, the viscosity arises from the tra
port of momentum between different shearing planes@18,19#
and, as the nematic domains can be orientated, the flu
momentum between these planes depends on this orienta

There are some predictions for the values of the visco
ty’s coefficients based on microscopic considerations, the
netic approach is certainly the most well known@9#. The
results found by Doi and Kuzzu, and improved by Lars
@12,16,17#, will be used here. Similar expressions have be
found by other researches@10,13,14#. Using these results we
have found that the corresponding Miesowicz coefficie
may be written as

h15
n

70S 21170R~p!S21
1225S2

2

1415S2116S4

1R~p!2~1415S2116S4! D ,

h25
n

70S 21270R~p!S21
1225S2

2

1415S2116S4

1R~p!2~1415S2116S4! D , ~1!

h35
1

2
nS 0.62

2R~p!2~2715S212S4!

35 D ,

where S25^P2(u¢•n¢)& and S45^P4(u¢•n¢)& are the equilib-
rium order parameters@20#, P2(x) and P4(x) are the Leg-
endre’s polynomials, and̂x& gives the mean value of th
random variablex, taken over the equilibrium angular distr
bution functionf 0(x) that, usingx5u¢•n¢ , gives the probabil-
ity of finding an arbitrary nematic domain in the direction
the unit vectoru¢ , once n¢ is a unit vector parallel to the
average direction ofu¢ . R(p)5(p221)/(p211), wherep is
the aspect ratio of the spheroid of revolution representing
nematic micelle. Furthermoren5%KBT/2D̄r , where D̄r is
the rotational diffusion coefficient which depends on the co
centration, the molecular weight, and the angular distribut
function f 0(x).

From these equations we see that the ratiosh3 /h1 and
h3 /h2 are totally determined by the parametersp, S2, and
S4. The unique parametern that in Eq.~1! could be used to
distinguish one nematic material from another is not pres
on these ratios. That is, the Mayer-Saupe theory predicts
once assumed that the interaction between the micelle
independent of the temperatureT, the order parametersS2
and S4 would become universal functions oft5T/TNI ,
where TNI is the temperature of the N-I phase transiti
@20,21#. Moreover,p is a geometrical parameter that cann
change significantly from one nematic specimen to anot
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Consequently, these ratios must be approximately the s
for all the nematic specimens for which the geometric p
portions are equivalent and, hence, they express a unive
ity of the nematic state. In order to study these results
values ofS2 andS4, calculated from the Maier-Saupe mod
@21,16#, have been used. For the parameterp it has been used
p510. The results of these calculations are shown in Fig
in the form of dotted lines.

III. EXPERIMENTAL RESULTS

In order to compare the above findings with experimen
results, LC viscosity data points have been collected in
LC literature. The list of the compounds utilized in th
analysis is given by PAA (p8-azoxyanisole!, MBBA ~p’-
methoxybenzylidene-p-n-butylaniline!, N4 ~eutectic mixture
of the 4-methoxy-48-n-butylazoxybenzenes!, EM ~eutectic
mixture of 48-n-pentylphenyl 4-methoxybenzoate an
48-n-pentylphenyl 4-n-hexyloxybenzoate!, 5CBP (4-n-
pentyl-48-cyanobiphenyl!, HBAB (p-n-hexyloxybenzyli-
dene-p8-aminobenzonitrile!, MIST ~1:1:1-molar mixture of
HBAB with p-n-butoxybenzylidene-p8-aminobenzonitrile
and p-n-octanoyloxybenzylidene-p8-aminobenzonitrile!
@22–29#. For all of these data the temperature was rescale
a new and unique temperature scale; the two fixed point
this temperature scale have been chosen as the crysta
nematic phase-transition point, for which was attributed
temperaturet50, and the nematic-isotropic phase-transiti
point, for which was attributed the temperaturet51. After-
wards, the ratiosh3 /h1 andh3 /h2 have been computed fo
each compound of this set and the results collected i
unique graphic, as shown in Fig. 2. From this figure, we

FIG. 2. In this figure results from different sources were used
furnish the ratios between the Miesowicz coefficients,h3 /h2 and
h3 /h1. In all datah3 /h2 appears in the upper half of the pictur
showing a regularity that suggests a universality. The data
h3 /h1 appear in the lower half of the picture and also sugges
universality. The set of isolated points~the stars, triangles, square
etc.! give the experimental result for these data, collected in
liquid crystal literature~the references are quoted in the text!. The
dotted lines give the predictions of the kinetic theory for these
tios. The continuous line gives the adjustment for the experime
data given by the model developed in this work. Observe that e
predicting a universality, the results of the kinetic theory are
evident disagreement with the experimental data.
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that the sets of points corresponding ton3 /n1 andn3 /n2 are
not randomly distributed. The values ofh3 /h1 fluctuate
aroundh3 /h1;0.4, a small increase with the rising of th
temperature being observed. The values ofh3 /h2 fluctuate
aroundh3 /h2;1.7, presenting a small decreasing with t
rising of the temperature. Furthermore, both sets of exp
mental data points seem to approach 1 as the tempera
approaches the N-I transition. Even presenting signific
fluctuations, it is clear that these experimental data po
occupy two distinct regions. The regularity and agreem
observed on their distribution seem to be in accord with
idea of the existence of a physical rule connecting them; a
a simple rescaling in the temperature, experimental data
different compounds, measured at different epochs by dif
ent researches, are clearly distributed along two distinct
gions, suggesting that they could coalesce along two sin
curves, expressing a universal relationship.

Figure 2 also presents a comparison between the exp
mental data and the kinetic prediction. Without a doubt,
distributions observed on these experimental data do
agree with that theoretical calculations. While the theoreti
predictions for the ratioh3 /h1 can roughly describe the ex
perimental observations, forh3 /h2 the experimental and
theoretical curves are in irreconcilable disagreement. Inde
for h3 /h2, they only agree aroundt51 and, as the tempera
ture is diminished, the two curves produce completely diff
ent results. These same calculations have been done u
other known kinetic@9–14# formulas for the Miesowicz co-
efficients and we have not found in the LC literature a the
retical prediction forh3 /h2 that could explain, even ap
proximately, the experimental findings. To understand w
this happens, consider Eq.~1! and observe that when th
region of the crystalline-nematic phase transition is a
proached, one would haveS2;1 andS4;1. So at this limit
one has

h25
0.6

2
nS 12

6.6

~p211!2D , ~2!

h35
0.6

2
n. ~3!

Hence, this equation predicts thath2 andh3 would become
nearly equal forp.3, leading to the result observed in Fi
2, h3 /h2.1. Nevertheless, as can be seen in that figure,
set of experimental data points does not confirm this pre
tion, suggesting that at the region of the crystalline-nema
transitionh3 /h2.1.75.

If we remember thatS2;1 and S4;1 implies that the
angular fluctuations of the long axis of the nematic dom
are nearly frozen, we see that it is the difference betw
these geometrical configurations that becomes relevan
this region. Consequently, at the point of neighborhoods
the crystalline-nematic phase-transition the form of the ne
atic domain and its packing must have a critical role in t
nematic viscosities. That is, around this region the distri
tion of nematic domains around a given point and the sh
ranged steric interaction, which are modeled by the calam
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shape of the nematic domains, cannot be ignored. This re
explains some essential differences between the proce
that will be used ahead and the one usually followed by
kinetic approach. Doi’s theory, and its improvements,
composed of two constitutive equations@12#: one determin-
ing the orientational distribution function and other expre
ing the stress tensor in terms of such a distribution functi
The equation for the orientational distribution function giv
explicit emphasis to the angular Brownian motion throu
the use of equations derived from the Smoluchowski,
Fokker-Planck equations@10#. Of course, this procedure i
appropriated when the thermal vibration dominates
scene, as happens in the neighborhoods of the nem
isotropic phase transition. But, as has been shown in d
above, such a procedure does not describe the measurem
made at lower temperatures. At the region of the crystalli
nematic transition another approach must be tried; this is
aim of the following section.

IV. A GEOMETRICAL COMPUTATION OF THE
MIESOWICZ COEFFICIENTS

In this section the ratio between the Miesowicz coe
cients will be computed by means of an approach that
phasizes the geometry of the nematic phase through the
plicit use of the nematic radial distribution function and t
local steric volumetric exclusion. As our aim is only to illu
trate how, near the crystalline nematic phase-transition po
these variables become important to the understanding o
viscosity of these materials, we have realized a simple an
sis that, surely, lacks the formal rigor that a further analy
must accomplish. Nevertheless, as an example of how
geometry of the packing properties of the nematic phase
a decisive rheological function as the crystalline phase
approached such in procedure is admissible. Ahead, the
remarks of this work, we will comment on some of the
points that, we think, deserve further analysis.

The starting point of our calculation is the known micr
scopic expression for a stress tensor@30#,

sa,z52
1

2V (
m,n

^Fm,n,ahm,n,z&, hm,n,z5Rm,z2Rn,z ,

~4!

whereV is volume of the sample,Fm,n,a gives the compo-
nent a of the force that the moleculem positioned atRW m

exerts on the moleculen positioned atRW n , hm,n,z gives the
projection on theeW z axis of the distance between them, a
^ f & is the thermodynamic mean of the functionf. Our proce-
dure will follow two steps. First, to ensure that the geome
of the local distribution of the nematic domains is bei
considered, the statistical averages will be taken with the
of the radial distribution function@31,32#. Second, to simu-
late the calamitic shape of the nematic domains, and
change with the temperature, a generalized coordinate
tem, the prolate spheroidal coordinate@33#, will be used. Of
course, if computed exactly, the procedure used in this pa
and the one that uses the kinetic approach must lead to
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same results. The differences would appear when approx
tions are made; each one will stress different aspects of
same problem.

So, letZ2(rW1 ,rW2) be the usual@34# two-particle distribu-
tion function, which is used to compute statistical averag
of a two-point functionf (rW1 ,rW2),

^ f ~rW1 ,rW2!&5E
V
E

V
Z2~rW1 ,rW2! f ~rW1 ,rW2!drW1drW2 . ~5!

Then, makingrW5rW12rW2, the relation

Z2~rW1 ,rW2! drW1drW25r2g~rW !drWdV ~6!

defines the pair distribution functiong(rW) of the system@34#,
wherer5N/V andN is the number of particles on the sy
tem. Consequently Eq.~4! can be written as

sa,z
g 52

r2

2 E
V
Fa~rW !hz

g~rW !g~rW !drW, ~7!

whereFa(rW) is the a component of the force between tw
particles, one located at the origin and the other located ar,
and hz

g(rW) gives theeW z component of the distance betwee
them. The superscriptg has been introduced to reinforce th
the distance between two particles along theeW z direction
surely depends on the orientation of the molecules and, c
sequently, on the distribution functiong. This expression will
be used to compute the translational viscosity of the syst
consequently, to be in accord with the geometry establis
in Fig. 1; the direction between the molecular long axis, a
the direction of the fluid flow will be changed to be in acco
with the geometry required by the corresponding Miesow
coefficient. Moreover, supposing that the force between
particles can be derived from a central potentialU(rW), i.e.,
Fa(rW)5]aU(rW),

sa,z
g 52

r2

2 E
V
hz

g~rW !g~rW !]aU~rW !drW. ~8!

An immediate result of this equation is that if the rad
distribution g(rW) is symmetric by reflection in a plane pe
pendicular to theeW z axis, then the stress tensor will becom
null becausehz

g(rW) will change sign by such reflection@the

central potentialU(rW) is always symmetric with respect t
such reflection#. Consequently, considering that when t
fluid is at restg(r ) is necessarily symmetric by reflectio
with respect to any plane, the only way to avoid this n
result is to admit that the existence of a gradient in the
locity of the fluid along theeW z direction breaks this symme
try. That is, the presence of a shearing flow must change
radial distribution functiong→g1Dg leading to a non-null
result in Eq.~8!. So, Dg must be a function of]zVx , i.e.;
Dg5Dg(]zVx), satisfying the condition lim]zVx→0Dg50.

As a result, in first order on shearing flow, one hasDg
;a]zVx . To find an explicit form toa the relaxation time
3-4
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approach can be used@18#. So, consider that shearing flo
happens along theeW x direction and that during a time interva
Dt a fluid element undergoes the displacementDx5x(t
1Dt)2x(t)5VxDt. Further, assume the existence of a
laxation timet, and thatDt.t. With these hypotheses th
corresponding change ing will be given by

Dg5
dg

dx

dx

dt
Dt, ~9!

.t
dg

dx
z]zVx , ~10!

where it has been assumed that]zVx is a constant and, con
sequently,Vx5z]zVx . So, a5tzdg/dx and the non-null
term of Eq.~8! becomes

sx,z
g 52t

r2

2
]zVxE

V
zhz

g~rW !]xg]xUdrW. ~11!

To compute the viscosityh we remember that by defini
tion h5sx,z /]zVx , which gives

hg52t
r2

2 E
V
zhz

g~rW !]xg]xUdrW. ~12!

In order to compute the above integral a special coo
nate system will be used, the prolate spheroidal coordin
@33#, Fig. 3, which is described by

x15d sinh~m!sin~v !cos~w!,

x25d sinh~m!sin~v !sin~w!, ~13!

x25d cosh~m!cos~v !,

wherex1 , x2, andx3 define a Cartesian coordinate syste
fixed on the molecule andm, v, w are generalized coordi
nates describing a radial variablem, and two angular vari-
ables,v and w, d being the focal distance. The choice
such a coordinate system is motivated by the fact that it g
a good simulation of the nematic domain. Assuming a sh
ing flow along theeW x axis, as shown in Fig. 1, the thre
different ways by which the molecular axis (x1 ,x2 ,x3) may
become coincident with the laboratory coordinates (x,y,z)
will give us the geometry of the three distinct Miesowi
coefficients. So, as can be seen in Fig. 1, whenx1→x, x2
→y, and x3→z, we have the geometry of the Miesowic
coefficients,h1. Performing a clockwise rotation ofp/2 of
this configuration around thex2 axis, that is,x1→2z, x2
→y andx3→x, the geometry of the second Miesowicz c
efficient h2 is produced. Finally, with further clockwise ro
tation of p/2 aroundx1, where x1→2z, x2→z, and x3
→y will produce the geometry of the third Miesowicz coe
ficient h3.

To proceed, it is made the further supposition that
interaction between the particles depends only on the ra
coordinatem, being independent of the angular variablesv
andw. That is,U[U(m). As a consequence the radial di
06170
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tribution function would also be limited to depending on
on m, g[g(m). To write Eq.~1! in terms of this coordinate
system the rules of transformation for each term of this eq
tion must be known. Here, this will be done explicitly fo
h1; analogous expressions can be found forh2 andh3. Of
course ,]xU→]xm]mU and]xg→]xm]mg. Then

h152t
r2

2 E
V
z1~m,v,w!h1z~m,v,w!

3S ]m

]x D 2

]mg]mUJdmdvdw, ~14!

whereJ is the Jacobian of the transformation. For the ge
metrical configuration ofh1, we have

z~m,v,w!5d coshm cosv,

hz
1~m,v,w!52d coshm,

]m

]x
52

2 cosw coshm sinv
d~cos 2v2cosh 2m!

,

J5d3sinv sinhm~sin2v1sinh2m!,

giving

FIG. 3. Geometry of the prolate spheroidal coordinate. The a
x1 , x2, and x3 are fixed on the molecule and as they rotate
relation to the axesx, y, and z, fixed on the laboratory, as a new
physical condition is produced, and a different viscosity is p
duced.
3-5
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h1522d3r2tE
V

cosh4m sinhm cosv sin3v cos2w

cos 2v2cosh 2m

3]mg]mUdmdvdw. ~15!

As ]mg and]mU depend only onm the integration onv
andw can be done, giving

h1522pd3r2tE cosh4m sinhm

3@11 log~ tanh2m!sinh2m#]mg]mUdm. ~16!

To proceed we remember that

]mU52@]m„exp~2bU !…#exp~bU !/b,

and take advantage of the presence of the hard core oU
around the positionmo to write ]m„exp(2bU)…'d(m2mo)
~about the physical meaning of this approximation see,
example, Ref.@31#!. Consequently we have

FIG. 4. Variation of the shape of an ellipsoid of revolutio
given by the prolate spheroidal coordinate, when the parametemo

is changed. This figure represents the change of the effective
of a nematic domain with the temperature.
e
ca
po
.

lo
e
p

ed

06170
r

h152G cosh4mo sinhmo@11 log~ tanh2mo!sinh2mo#,
~17!

where

G5
pd3r2t

b
exp@bU~mo!#]mg/m5mo

. ~18!

Using the same procedure, analogous expressions ca
found for h2 andh3,

h252G sinh4mocoshmo~cosh 2mo2sinh 2mo!, ~19!

h35
G

3
sinh3mo~cosh 2mo2sinh 2mo!

3~11cosh 2mo12 sinh 2mo!. ~20!

V. UNIVERSALITY

The general form of the viscosity coefficients found in t
preceding section is, in at least one aspect, very simila
those found in the kinetic theory. In both cases these exp
sions can be separated into two parts; one,G, which is the
same for all Miesowicz’s coefficients, express the thermo
namical properties that can be used to identify an spec
nematic material, and the other, which is essentially geom
ric, distinguishes one viscosity coefficient from anoth
Consequently, as happened in the kinetic theory, the ra
between these expressions cancel the common term
identify a particular material and all that remains is a set
equations expressing some general and universal prope
of the nematic material. Thus, as long as the above appr
mations are valid, we have

rm
h3

h1
5

2 sechmo~coshmo12 sinh 2mo!~cosh 2mo2sinh 2mo!tanh2mo

3~11 log~ tanh2mo!sinh2mo!
, ~21!
e

der
tem-
h3

h2
5

1

3
cothmo~11cothmo!, ~22!

and through the parametermo , these ratios between th
Miesowicz coefficients are dominated by the geometri
character of the nematic domains. To see the physical im
tance of the geometry on these ratios let us consider Fig
where nematic domains withmo50.30, 0.50, 0.80 are
shown. As can be observed in these figures asmo increases
the nematic domains become more and more spherical,
ing the nematic order. Thusmo can be used to represent th
effective shape of the nematic domains affording the sup
sition that it is a function of the order parametermo
5mo(S). Furthermore, according to this figure it is expect
l
r-
4,

s-

o-

that mo increases whenS diminishes and, due to the phas
transition for smallS, it could be supposed that

mo5
a

Sb
, ~23!

wherea andb are constants. Considering also that the or
parameter can be expressed in terms of the rationalized
perature@20,21#, S;A12t wheret5T/Tc andTc is the tem-
perature of nematic-isotropic phase transition point, Eq.~23!
can be also expressed as

mo5
a

~12t !g
, ~24!
3-6
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where the coefficientsa andg have to be found experimen
tally.

Even being possible to find the values ofa andg through
adjusts with experimental results an argument suggestin
value forg will present here. The balance between the int
actions taking place at the nematic domains and its ther
vibrations leads to the variations of the molecular sha
shown in Fig. 4, provoking the changes in the order para
eter observed in the experiments. Considering that the
lecular interactions are well described by the Lennard-Jo
potential

U~mo!5eF S s

mo
D 12

2S s

mo
D 6G , ~25!

wheree ands are constants, and that the thermal vibratio
are proportional to the temperature,Et5N/2KBT, whereN is
the number of moles andKB is the Boltzmann constant, i
can be said that the energy of a nematic domain is appr
mately given by

E5
N

2
KBT1eF S s

mo
D 12

2S s

mo
D 6G . ~26!

This predicts that for a stable condition the range of
nematic domainm r would be given by

mo5sSAe~Ae1A4E12NKBT2e!

NKBT22E D 1/6

. ~27!

According to these last two equations whenT→Tc
52E/NKB the thermal energy would dominate the energy
the nematic configuration leading to a divergence ofmo with
the formmo;(T2Tc)

1/6.
Of course, all the reasoning leading to this result is

roughly approximation of a very complex situation. But the
is an essential result on it, when it is compared with Eq.~24!
one sees thatg51/6, and that equation becomes

m5
a

S1/3
. ~28!

The important consequence of this relation is that it pred
that all experimental results would be described with
adjust of a unique experimental parameter,a. The continu-
ous lines of Fig. 2 give the best fit obtained witha50.68.

VI. FINAL REMARKS AND CONCLUSION

Along this work we have shown that geometrical form
which the nematic domains are aggregated to form the liq
crystal cannot be ignored when the rheological propertie
such materials are computed and the effects of such omis
are particularly important at the neighborhoods of t
crystalline-nematic phase-transition point. Furthermore, w
these geometrical properties the universal behavior obse
in the ratio between the Miesowicz coefficients could be
plained. In order to establish this universal law we have u
the results of the kinetic theory, some experimental d
06170
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available in the LC literature and computed these rat
through an independent way. All these approaches predic
existence of such universal relation. However, when co
pared with known experimental data, one of the curves p
dicted by the kinetic theory does not agree with the gene
trends observed in the distribution of the data points. Inde
only in the neighborhoods of the nematic-isotropic pha
transition, does the kinetic theory have some concorda
with the experiment, and as the crystalline-nematic transit
point is approached, these two curves present an irreco
able disagreement. The reason for this is that, accordin
the calculations of the kinetic theory, when the order para
eters S2 and S4 approach the crystalline phase the tw
Miesowicz coefficientsh2 andh3, would become essentially
equal. However, these two configurations are clearly so
ferent that it is impossible to believe that the prediction
equal viscosities could make any physical sense; indeed
experimental results corroborate this doubt showing that
measured viscosities are actually completely different. In
der to overcome these difficulties it has been supposed
the observed deviation of the kinetic theory from the expe
mental data comes from the fact that some aspects of
geometry of the nematic structure, which are essential in
neighborhoods of the crystalline-nematic transition, have
been taken into account. So, in order to consider these
pects, the radial distribution functions have been used in
statistical averages and, furthermore, through the use o
appropriated coordinate system, the geometry of the nem
domains and the steric interaction between them have b
considered. Finally, our results also have predicted a uni
sal law for the ratio between the Miesowicz coefficients th
describes efficiently the experimental data.

Nevertheless, as have been pointed out before, there
some aspects of our calculations that deserve further c
ments. Let us begin by adverting that Eq.~9! assumes tha
the radial distribution function describing a fluid flow can b
obtained by continuous extension of that describing a
tionary solution. As has been noticed in the text such
approach is equivalent to the relaxation time approximat
~see, for example, Eq.~13.5.6! of Ref. @18#! and, of course,
an improved kinetic approach, in which stationary solutio
arise naturally, would be required. In the same way, E
~23!, ~24!, assume that an effective shape of the nema
domain, as shown in the Fig. 4, is a function of the ord
parameter and, consequently, of the corresponding redu
temperature. Clearly, this is anad hochypothesis that was
made with the unique purpose of giving emphasis to
geometry of the nematic cell. Likewise, the thermal arg
ments leading to the power 1/3 toS, at Eq.~28!, were intro-
duced to avoid considering it as a parameter to be adju
with the use of the experimental points. That is, that reas
ing has the aim of showing that very simple arguments
be used to evaluate the term relating the shape of the nem
domain with the temperature. Synthesizing, along the
proach that leads to the continuous curve shown in Fig
somead hochypotheses, which must be further investigate
were made. Nevertheless, all of them have had the objec
of revealing the importance of the geometry of the nema
packing to the understanding of the universalities that h
3-7
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been found in the viscosities of the liquid crystals.
Finally, let us observe that in the last few years a se

results has been published in which the viscosity of the n
atic materials has been calculated using some interes
geometrical arguments in which through an affine trans
mation the viscosities of a perfect aligned nematic fluid co
posed by ellipsoidal domains are mapped on the viscosit
a fluid of spherical domains@35,36#. Afterwards, a prescrip-
tion of how to associate this perfect aligned nematic fl
with the viscosity of a real fluid was suggested. Due to
nature of such approach, some interesting questions ca
formulated about the interconnection between these res
and the ones that achieved along this paper. For examp
s

s.

i.

ds

ics

06170
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, is

it capable to describe correctly the universality that we ha
described above? Does it give correct descriptions of
nematic viscosities at the neighborhoods of the nema
crystalline transition? As such approach is essentially g
metric, it is hoped that it could help us in the research s
gested by this paper and form the subject of a further stu
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