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Geometric approach to the Miesowicz coefficients at the region of the crystalline-nematic transition
and a universal relation for their ratio
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In this work the ratios between the Miesowicz coefficients of rigid calamitic nematic liquid crystals will be
studied. It will be shown that the microscopic theory that describes these coefficients, the kinetid kheory
Doi and S. F. Edward§he Theory of Polymer Dynami¢®xford Press, New York, 198 suggests that some
ratios between the Miesowicz coefficients would have a universal character, that does not depend on the
nematic material being examined. A set of experimental data has been collected from the liquid crystal
literature and, once these data are rescaled in a common temperature scale, they point to the existence of such
a universality. Nevertheless, only in the neighborhoods of the nematic-isotropic transition, do the theoretical
calculations of the kinetic theory and the experimental data predict the same profile for this universality; when
the region of the crystalline-nematic transition is approached theory and experiment present severe discrepan-
cies. The reason for this disagreement is studied and it is proposed that it results from the fact that the kinetic
theory does not take into account the packing properties of the nematic medium. A different approach to the
calculation of these ratios is proposed and it is shown that it describes the experimental data for all tempera-
tures.
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I. INTRODUCTION the particular nematic material being examined. In Sec. IlI it
will be shown that for a broad set of nematic materials the
In 1935[1,2], it was established that in the presence ofexperimental results are in agreement with the existence of
external fields some liquid crystalL.C) materials could such universality, but the observed values of these data do
present anisotropic viscosity, i.e., the measured value of theot agree with the predictions of the kinetic theory. It will be
viscosity depends on the relative direction between an exte@rgued that the reason of such disagreement is that the ki-
nal field and the shearing plane. Nowadays, it is known thaf€tic approach does not consider the geometric properties of
this phenomenon has an origin in the anisotropic shape of th#'€ Packing of the nematic domains, which become impor-
nematic domains; as the direction of the external field id@nt when the crystalline-nematic transition point is ap-
changed the collective mean orientation of these moleculeg,roaChed' In Sec. IV a def|n|t|on Of. strgss tensor that empha-
with relation to the shearing plane also changes, establishin Z€s the role of the'nema.tlc packl[@l is used 10 mgke an
different physical conditions to the transport of momentum aluation of the Miesowicz coefficients that confirms the

between the adiacent shearing planes. The prototvpe theOIprediction of a universal behavior for these ratios and, with
) . 9p - 'hep P t¥1at, the universality observed in the distribution of the ex-
whose phenomenological results all microscopic model

. . . ?)erimental data points could be correctly explained. In syn-
must explain is the ELP approadB-8], which, starting yqgjs "in this work it is shown that the ratio between the
from hydrodynamics considerations, shows that on these Magiesowicz coefficients of rigid calamitic nematic liquid

terials the dissipation due to fluid flow must be characterizeq;rystm presents a universal behavior which can be explained

by five different viscosity coefficients. Three of them de-\yith the geometric properties of the packing of the nematic
scribe the three different possibilities for the relative orien-gomains.

tation between external field and the shearing plane, known
as Miesowicz’s coefficients. The other two describe the sym-
metric and the antisymmetric combinations of the shearing
around a nematic domain, the rotational coefficients. There
are few theories that, starting from microscopic consider- The observation of modifications on the viscosity of an
ations, try to explain these results. The most known one i$C, when the direction of an externally applied magnetic
the so-called kinetic theor}9]. This theory, originally for- field is changed, leads to the following definition for the
mulated for polymers and extended for L{8-14], is able  Miesowicz viscosity coefficients:

to give a microscopic explanation to the observed anisotropy (i) 7,, when the long axis of the molecules is parallel to
on the LC viscosity coefficients but, as will be shown aheadthe gradient of the velocity,

some universal relatiorfd 5] between these coefficients can- (i) #,, when the long axis of the molecules is parallel to
not be correctly explained by it. the direction of the flow,

In Sec. Il it will be shown that an immediate consequence (iii) 73, when the long axis of the molecules is perpen-
of the kinetic theoryf16,17] is the fact that the ratio between dicular to the direction of the flow and also perpendicular to
the Miesowicz coefficients of rigid calamitic molecules the velocity gradient.
would present a universal behavior that does not depend on Figure 1 defines the geometry used along with this work

II. MIESOWICZ'S COEFFICIENTS AND KINETIC
THEORY

1063-651X/2002/6@)/0617038)/$20.00 66 061703-1 ©2002 The American Physical Society



M. SIMOES AND S. M. DOMICIANO PHYSICAL REVIEW E66, 061703 (2002

1’] it; one below that will try to reduce its velocity, and another
1 _ : : . .
above that will try to increase its velocity. Now on these
> sheets will be called by shearing planes. Therefore, the nem-
_) y g p ’

l atiq do_mains in one shearing plane interapt with other dp-
> - mains in the neighbor shearing planes trying to change its

N ‘ momentum. By definition, the viscosity arises from the trans-

_—»} ' port of momentum between different shearing plai&s;19

_}

»
S and, as the nematic domains can be orientated, the flux of
o3 momentum between these planes depends on this orientation.
! x There are some predictions for the values of the viscosi-
" ty’s coefficients based on microscopic considerations, the ki-
netic approach is certainly the most well know®|. The
T]z results found by Doi and Kuzzu, and improved by Larson
[12,16,17, will be used here. Similar expressions have been
_— :
i found by other research¢$0,13,14. Using these results we
> have found that the corresponding Miesowicz coefficients
i may be written as
g —> =D o1 70R(p) S, + 225,
- > =70 (P)S* 12755,7 165,
e‘/
>
& +R(p)4(14+5S,+ 1684)) :
122553
n; o 72=70| 21 TR(PIS 17755 e,
_—
— +R(p)%(14+5S,+ 165 ) 1
— (P)2(14+5S,+16S,) (1)
— O
1 2R(pP)A(—7+5S,+2S,)
_> nN3==5 n( 0.6— ,
-)Z _> 2 35
» > . .
S . where S,=(P,(u-n)) and S,=(P,4(u-n)) are the equilib-
e rium order parameterg20], P,(x) and P,(x) are the Leg-

o _ ) endre’s polynomials, andx) gives the mean value of the
FIG. 1. This figure defines the geometry that is used to calculat(leandom variable, taken over the equilibrium angular distri-

each one of the Miesowicz coefficients in this work. The anows, .- functionf that. usinox=10- . ai th babil
give the direction of the fluid follow and the continuous variation of ution functionfo(x) that, using<=u-n, gives the probabil-

its length represent the variation of the fluid velocity. For each'Y of finding anﬁarbltraryenematm domain in the direction of
Miesowicz coefficient the molecular long axis has a different ori-the unit vectoru, oncen is a unit vector parallel to the
entation relative to the direction of the fluid flow. (8) the geom-  average direction ofi. R(p)=(p?>—1)/(p?>+1), wherep is

etry of the coefficienty; is shown, the long axis of the molecules is the aspect ratio of the spheroid of revolution representing the

Coctfcent7 5 Shown; the long axis of the moloaules s paraliel o NEMatC micelle. Furthermora=KgT/2D; , whereD, is
72 ' g P the rotational diffusion coefficient which depends on the con-

the direction of the flow. In Fig(c) the geometry of the coefficient . - L
13 is shown, the long axis of the molecules is perpendicular to the%:lfr?é{%téofn'(;r;e molecular weight, and the angular distribution
O .

direction of the flow and also perpendicular to the velocity gradient. . .
From these equations we see that the ratgér, and

and illustrates, for each one of the Miesowicz coefficients,%/ 77, are totally determined by the paramet@(sS,, and

the relative orientation between the direction of the long axiss4' The unique parameterthat in Eq.(1) could be used to

of the nematic domains and the direction of the fluid flow; itdIStInguISh one nematic material from another is not present

will be supposed that the nematic fluid is flowing along the2" these ratios. That s, the Mayer-Saupe theory predicts thqt,
- . . ) ...__once assumed that the interaction between the micelles is
e, axis and that its velocity depends only on the position

" independent of the temperatufe the order parameterS,
along thee, axis. So, it may be assumed that the fluid motionand S, would become universal functions df=T/Ty;,

is composed of sheets of constant velocity and, as one mov@gere Ty, is the temperature of the N-I phase transition
along thee, direction, a new sheet with a different velocity is [20,21. Moreover,p is a geometrical parameter that cannot
found. Hence, given a sheet, two other sheets will surroundghange significantly from one nematic specimen to another.
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that the sets of points correspondingitg/n, andnz/n, are

175 not randomly distributed. The values of;/7; fluctuate
around s/ 7,~0.4, a small increase with the rising of the
1.5 ;
temperature being observed. The valuespgf 5, fluctuate
1.25 aroundzs/7,~1.7, presenting a small decreasing with the
rising of the temperature. Furthermore, both sets of experi-
02 0 06 08 ; mental data points seem to approach 1 as t_he temperature
075 approaches the N-I transition. Even presenting significant

fluctuations, it is clear that these experimental data points

05 A %, occupy two distinct regions. The regularity and agreement
A A A observed on their distribution seem to be in accord with the
0.25 .*!37- - -.ﬁ}f‘ - *‘k’k e 328 idea of the existence of a physical rule connecting them; after

a simple rescaling in the temperature, experimental data of
FIG. 2. In this figure results from different sources were used tadifferent compounds, measured at different epochs by differ-
furnish the ratios between the Miesowicz coefficienjg/ 7, and  ent researches, are clearly distributed along two distinct re-
73/ 71. In all datans/ 7, appears in the upper half of the picture, gions, suggesting that they could coalesce along two single
showing a regularity that suggests a universality. The data focurves, expressing a universal relationship.
n3/ 7, appear in the lower half of the picture and also suggest a Figure 2 also presents a comparison between the experi-
universality. The set of isolated poinfthe stars, triangles, squares, mental data and the kinetic prediction. Without a doubt, the
etc) give the experimental result for these data, collected in thejjstributions observed on these experimental data do not
liquid crystal literature(the references are quoted in the jesithe  agree with that theoretical calculations. While the theoretical

dotted lines give the predictions of the kinetic theory for these rapredictions for the ratiays/ 7, can roughly describe the ex-
tios. The continuous line gives the adjustment for the experimenta&j

q iven by th del developed in thi « Ob o erimental observations, fops/7, the experimental and
ata given by the model developed in this work. Observe that eveiyq retical curves are in irreconcilable disagreement. Indeed,
predicting a universality, the results of the kinetic theory are in

evident disagreement with the experimental data for 73/ 72, they only agree aroun-1 and, as the tempera-

9 P ' ture is diminished, the two curves produce completely differ-
) _ ent results. These same calculations have been done using
Consequently, these ratios must be approximately the sam§ner known kinetid9—14] formulas for the Miesowicz co-
for all the nematic specimens for which the geometric pro-gfficients and we have not found in the LC literature a theo-
portions are equilvalent and, hence, they express a universakiica) prediction for»s/7, that could explain, even ap-
ity of the nematic state. In order to study_ these results th‘foroximately, the experimental findings. To understand why
values ofS, andS,, calculated from the Mfmer—Saupe model ihis happens, consider E¢l) and observe that when the
[21,16], have been used. For the paramgtérhas been used egion of the crystalline-nematic phase transition is ap-

p=10. The results of these calculations are shown in Fig. 3;5ached, one would ha®~ 1 andS,~1. So at this limit
in the form of dotted lines.

one has
lll. EXPERIMENTAL RESULTS . _%n( .- 56 @
2_ 1
- . . 2 2 2
In order to compare the above findings with experimental (p°+1)
results, LC viscosity data points have been collected in the
LC literature. The list of the compounds utilized in this _06 3
analysis is given by PAA [{’-azoxyanisolg MBBA (p'- 3T

methoxybenzyliden@-n-butylaniling, N4 (eutectic mixture

of the 4-methoxy-4-n-butylazoxybenzengs EM (eutectic  Hence, this equation predicts thas and 3 would become
mixture of 4'-n-pentylphenyl 4-methoxybenzoate and nearly equal fop>3, leading to the result observed in Fig.
4'-n-pentylphenyl 4n-hexyloxybenzoate 5CBP (4n- 2, »3/75,=1. Nevertheless, as can be seen in that figure, the
pentyl-4' -cyanobiphenyl HBAB (p-n-hexyloxybenzyli-  set of experimental data points does not confirm this predic-
denep’-aminobenzonitrile MIST (1:1:1-molar mixture of tion, suggesting that at the region of the crystalline-nematic
HBAB with p-n-butoxybenzylideng’-aminobenzonitrile  transition 4/ 7,=1.75.

and p-n-octanoyloxybenzylideng‘ -aminobenzonitrilg If we remember thaS,~1 and S,~1 implies that the
[22—-29. For all of these data the temperature was rescaled tangular fluctuations of the long axis of the nematic domain
a new and unique temperature scale; the two fixed points adre nearly frozen, we see that it is the difference between
this temperature scale have been chosen as the crystallingrese geometrical configurations that becomes relevant at
nematic phase-transition point, for which was attributed thehis region. Consequently, at the point of neighborhoods of
temperaturé=0, and the nematic-isotropic phase-transitionthe crystalline-nematic phase-transition the form of the nem-
point, for which was attributed the temperatirel. After-  atic domain and its packing must have a critical role in the
wards, the ratios);/ 7, and 53/ 7, have been computed for nematic viscosities. That is, around this region the distribu-
each compound of this set and the results collected in &on of nematic domains around a given point and the short
unique graphic, as shown in Fig. 2. From this figure, we seeanged steric interaction, which are modeled by the calamitic
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shape of the nematic domains, cannot be ignored. This resudame results. The differences would appear when approxima-
explains some essential differences between the procedutiens are made; each one will stress different aspects of the
that will be used ahead and the one usually followed by thesame problem.

kinetic approach. Doi's theory, and its improvements, is So, letZ,(r,,r,) be the usuaJ34] two-particle distribu-

composed of two constitutive equatioff?]: one determin-  tjon function, which is used to compute statistical averages
ing the orientational distribution function and other expresss o two-point functionf (F1,r)
ing the stress tensor in terms of such a distribution function. nen
The equation for the orientational distribution function gives .o .o L
explicit emphasis to the angular Brownian motion through <f(r1,r2))=f f Zy(ry,rp)f(ry,rp)drdry. (9
the use of equations derived from the Smoluchowski, or VIV

Fokker-Planck equationglQ]. Of course, this procedure is
appropriated when the thermal vibration dominates th
scene, as happens in the neighborhoods of the nematic-
isotropic phase transition. But, as has been shown in detalil
above, such a procedure does not describe the measurements, o N
made at lower temperatures. At the region of the crystallinedefines the pair distribution functigg(r) of the systeni34],

nematic transition another approach must be tried; this is th@herep=N/V andN is the number of particles on the sys-
aim of the following section. tem. Consequently Eq4) can be written as

eThen, makingf= Fl—FZ, the relation

Z,(ry,ry) drydry=p2g(r)drdV (6)

2
p - e
IV. A GEOMETRICAL COMPUTATION OF THE oy, == 7vaa(r)h§’(r)g(r)dr, (7)
MIESOWICZ COEFFICIENTS

In this section the ratio between the Miesowicz coeffi-whereFa(F) is the @« component of the force between two
cients will be computed by means of an approach that emparticles, one located at the origin and the other located at
phasizes the geometry of the nematic phase through the exnd hd(r) gives thee, component of the distance between
p||C|t use of the nematic radial distribution function and thethem The Superscrim has been introduced to reinforce that

local steric volumetric excl_usion. As our aim is only_ to iIIus_— the distance between two particles along thedirection
trate hOW’. near the crystz_allme nematic phase—transm_on pOIntsurely depends on the orientation of the molecules and, con-
these \_/ar|ables becomg important to the gnderstgndmg of tl‘%quently, on the distribution functi@n This expression will
viscosity of these materials, we he}ve realized a simple ana!y[—)e used to compute the translational viscosity of the system,
sis that, surely, lacks the formal rigor that a further analys'sconsequently, to be in accord with the geometry established
must accomplish. Nevertheless, as an example of how the Fig. 1; the direction between the molecular long axis, and

geometry of the pa_cking properties of the nema_tic phase h?(ﬁe direction of the fluid flow will be changed to be in accord
a decisive rheological function as the crystalline phase %g
g

> . -~ . With the geometry required by the corresponding Miesowicz
approached such in procedure is admissible. Ahead, the fin efficient. Moreover, supposing that the force between the
remarks of this work, we will comment on some of these :

points that, we think, deserve further analysis. particles can be derived from a central potentigl), i.e.,

The starting point of our calculation is the known micro- Fo(r)=a,U(r),
scopic expression for a stress tenga], ’
) ‘Tg,z:_%fvhg(F)g(F)ﬁaU(F)dF- (8)
Oaz= " N 2 <Fm,n,ahm,n,z>! hm,n,z: Rm,z_ Rn,zr

mn 7 An immediate result of this equation is that if the radial
distribution g(F) is symmetric by reflection in a plane per-

whereV is volume of the sampleE ., gives the compo- pendicular to the&;Z axis, then the stress tensor will become
L , 'a - . . .
nent a of the force that the moleculm positioned atR,, ~ Null becausehi(r) will change sign by such reflectidithe

exerts on the molecule positioned alﬁn, hon, gives the central pote_ntiaU(r) is always symr_netr_ic with respect to
- - . . such reflectioh Consequently, considering that when the
projection on thee, axis of the distance between them, and

(f) is the thermodynamic mean of the functibrour proce- fluid is at restg(r) is necessarily symmetric by reflection
with respect to any plane, the only way to avoid this null

dure will fOHOW tW.O s'geps. First, to ensure that the geomgtryresult is to admit that the existence of a gradient in the ve-
of the local distribution of the nematic domains is being

considered, the statistical averages will be taken with the usi@city of the fluid along thee, direction breaks this symme-

of the radial distribution function31,37. Second, to simu- Y- Thatis, the presence of a shearing flow must change the
late the calamitic shape of the nematic domains, and it§adial distribution functiorg—g+Ag leading to a non-null
change with the temperature, a generalized coordinate sy&esult in Eq.(8). So, Ag must be a function of,V,, i.e.;
tem, the prolate spheroidal coordin&8s], will be used. Of Ag=Ag(d,V,), satisfying the condition ligl, _,Ag=0.
course, if computed exactly, the procedure used in this papeks a result, in first order on shearing flow, one hag

and the one that uses the kinetic approach must lead to the ad,V,. To find an explicit form toa the relaxation time
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approach can be usdd8]. So, consider that shearing flow A X
happens along tr‘é( direction and that during a time interval A
At a fluid element undergoes the displacemént=x(t Axis of rotational symmetry

+At)—x(t)=V,At. Further, assume the existence of a re-
laxation timer, and thatAt=r. With these hypotheses the
corresponding change mwill be given by

A _dg dxA g

9= gx gt At 9
dg

= T& Z9,Vy, (10

where it has been assumed tl#g¥, is a constant and, con-
sequently,V,=2z4,V,. So, a=rzdgdx and the non-null
term of Eq.(8) becomes

2

o8 = r%azvxf 2H8(F) 0,94, UdT. (11)
\%
To compute the viscosityy we remember that by defini- 5
tion »= o, ,/d,Vy, which gives /
K
p? g - - /X, \
7792—7'3 zh(r)a,ga,Udr. (12
\%

FIG. 3. Geometry of the prolate spheroidal coordinate. The axes

In order to compute the above integral a special coordiX1: X2: @ndxs are fixed on the molecule and as they rotate in

nate system will be used, the prolate spheroidal coordinatd§/ation to the axes, y, andz, fixed on the laboratory, as a new
[33], Fig. 3, which is described by physical condition is produced, and a different viscosity is pro-

duced.

X;=d sinh( w)sin(v)cod ¢),
! tribution function would also be limited to depending only

Xo=d sinh( w)sin(v)sin(e), (13 onu, g=g(u). To write Eq.(1) _in terms of this coordi_nate
system the rules of transformation for each term of this equa-
X,=d coshi u)coqv), tion must be known. Here, this will be done explicitly for

71, analogous expressions can be found fgrand n5. Of
vyherexl, X, andxs define a Cartesian coordinate systemcourse ,d,U— dypd, U and dyg— dxud,g. Then
fixed on the molecule ang, v, ¢ are generalized coordi-
nates describing a radial variable and two angular vari- p?
ables,v and ¢, d being the focal distance. The choice of m= —77J Zy(p,v, @)y (w0, 0)
such a coordinate system is motivated by the fact that it gives v
a good simulation of the nematic domain. Assuming a shear-

ing flow along theéX axis, as shown in Fig. 1, the three X
different ways by which the molecular axig4(,X,,x3) may
become coincident with the laboratory coordinatgsy(z)
will give us the geometry of the three distinct Miesowicz
coefficients. So, as can be seen in Fig. 1, wkem X, X,
—vYy, andxz—z, we have the geometry of the Miesowicz
coefficients,n,. Performing a clockwise rotation af/2 of
this configuration around the, axis, that is,x;— —2z, X5

2
d,9d,UJdudvde, (19

X

whereJ is the Jacobian of the transformation. For the geo-
metrical configuration ofy;, we have

Z(u,v,¢)=d coshu cosv,

—Yy andxz—X, the geometry of the second Miesowicz co- h%(,u,v,qa)ZZd coshu,
efficient 7, is produced. Finally, with further clockwise ro-
tation .of /2 aroundx,, where X1— =27, Xp—Z, a.nd X3 e 2 cose coshu sinv
—Yy will produce the geometry of the third Miesowicz coef- 9x  d(cos —cosh %)’
ficient 7.

To proceed, it is made the further supposition that the s ) )
interaction between the particles depends only on the radial J=d3sinu sinhu(sir’v +sintfu),

coordinateuw, being independent of the angular variables
and ¢. That is,U=U(u). As a consequence the radial dis- giving
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Ve

#=030 £,=0.50 1,=080 Using the same procedure, analogous expressions can be
found for 7, and 73,
FIG. 4. Variation of the shape of an ellipsoid of revolution,
given by the pr.ola.te spheroidal coordinate, when the pararpe,ter 7,=2G Sinh“p,ocosh,u,o(cosh 2u,—sinh2u,), (19
is changed. This figure represents the change of the effective form
of a nematic domain with the temperature.

71=2G cost u, sinhu,[ 1+ log(tantf u,)sink? u,],
17)

where

wd3p?r

=%

eXF{BU(MO)]aILg/M:MO' (18)

G
=—sinPuq(cosh 2u,—sinh
cost u sinhu cosv sinfu coge 75 =g SINT pol Ao o)

=-2d° ZTJ
n Py cos 2 —cosh 2 X (14 cosh 2ug+ 2 sinh 2u,). (20)
%xd,9d,Ududvde. (15
_ _ V. UNIVERSALITY
As 4,9 andd,U depend only onu the integration on _ _ . _
and ¢ can be done, giving The general form of the viscosity coefficients found in the
preceding section is, in at least one aspect, very similar to
those found in the kinetic theory. In both cases these expres-
sions can be separated into two parts; dBewhich is the
same for all Miesowicz’s coefficients, express the thermody-
namical properties that can be used to identify an specific
nematic material, and the other, which is essentially geomet-
ric, distinguishes one viscosity coefficient from another.
—[d,(exp(— BU))]exp BU)/ B, Consequently, as happened in the kinetic theory, the ratios
between these expressions cancel the common term that
and take advantage of the presence of the hard cofd of identify a particular material and all that remains is a set of
around the position, to write d,(exp(—BU))~ o(u— o) equations expressing some general and universal properties
(about the physical meaning of this approximation see, foof the nematic material. Thus, as long as the above approxi-
example, Ref[31]). Consequently we have mations are valid, we have

n=- 27Td3p27'j costu sinhu

X[1+log(tanifu)sintfu]d,g9d,Udu.  (16)

To proceed we remember that

73 _ 2 sedhpy(coshu,+ 2 sinh 2u,)(cosh 2u,—sinh 2,uo)tanh°-,u0

(21
71 3(1+log(tantfu,)sintf i)
|
73 1 that u, increases whet$ diminishes and, due to the phase
7, 3 cothuo(1+cothus), (22 {ransition for smallS, it could be supposed that
a
and through the parameter,, these ratios between the Mozg, (23

Miesowicz coefficients are dominated by the geometrical
character of the nematic domains. To see the physical impor- —
tance of the geometry on these ratios let us cpor¥5|der Flgp therea andb are constants. Considering also that the order
where nematic domains withu,=0.30, 0.50, 0.80 are parameter can be expressed in terms of the rationalized tem-
O ~ -
shown. As can be observed in these flgurewg\sncreases peraturd 20,21, S~ y1—t wheret="T/T; andT is the tem
gerature of nematic-isotropic phase transition point, (28)

ing the nematic order. Thys, can be used to represent the Can be also expressed as

effective shape of the nematic domains affording the suppo-
sition that it is a function of the order parameter, __“ (24)

= uo(S). Furthermore, according to this figure it is expected 'uo_(l—t)V'
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where the coefficienta andy have to be found experimen- available in the LC literature and computed these ratios
tally. through an independent way. All these approaches predict the
Even being possible to find the valuesBindy through  existence of such universal relation. However, when com-

U(po)=€

(o]

N
E=5KgT+e

adjusts with experimental results an argument suggesting gared with known experimental data, one of the curves pre-
value fory will present here. The balance between the interdicted by the kinetic theory does not agree with the general
actions taking place at the nematic domains and its thermatends observed in the distribution of the data points. Indeed,
vibrations leads to the variations of the molecular shapegnly in the neighborhoods of the nematic-isotropic phase
shown in Fig. 4, provoking the changes in the order paramyransition, does the kinetic theory have some concordance
eter observed in the experiments. Considering that the mQgjth the experiment, and as the crystalline-nematic transition
Iecular_ interactions are well described by the Lennard-Joneﬁoim is approached, these two curves present an irreconcil-
potential able disagreement. The reason for this is that, according to
12 [ 6 the calculations of the kinetic theory, when the order param-
_<_) , (25) eters S, and S, approach the crystalline phase the two
Mo Miesowicz coefficientsy, and 53, would become essentially
.. equal. However, these two configurations are clearly so dif-
wheree ando are constants, and that the thermal vibrationstgrent that it is impossible to believe that the prediction of
are proportional to the temperatutg = N/2KgT, whereNis  oq5] viscosities could make any physical sense; indeed the
the number of moles ankg is the Boltzmann constant, it eynerimental results corroborate this doubt showing that the
can be said that the energy of a nematic domain is approxfyeasured viscosities are actually completely different. In or-
mately given by der to overcome these difficulties it has been supposed that
12 6 the observed deviation of the kinetic theory from the experi-
i) _<1> ] (26) ~ mental data comes from the fact that some aspects of the
Mo Mo geometry of the nematic structure, which are essential in the
i i . neighborhoods of the crystalline-nematic transition, have not
This p_red|cts _that for a stabl_e condition the range of the,een taken into account. So, in order to consider these as-
nematic domairu, would be given by pects, the radial distribution functions have been used in the
16 statistical averages and, furthermore, through the use of an
“ =U< Ve(e+ \/4E+2NKBT_€)> _ (27)  appropriated coordinate system, the geometry of the nematic
° NKgT—2E domains and the steric interaction between them have been
) ) considered. Finally, our results also have predicted a univer-
According to these last two equations Wha@R-Tc g Jaw for the ratio between the Miesowicz coefficients that
=2E/NKgpg the thermal energy would dominate the energy ofgescribes efficiently the experimental data.
the nematic configuration leading to a divergencg.gfwith Nevertheless, as have been pointed out before, there are
the form uo~ (T—To) Y. some aspects of our calculations that deserve further com-
Of course, all the reasoning leading to this result is aments. Let us begin by adverting that £§) assumes that
roughly approximation of a very complex situation. But therethe radial distribution function describing a fluid flow can be
is an essential result on it, when it is compared with@4)  optained by continuous extension of that describing a sta-

one sees thay=1/6, and that equation becomes tionary solution. As has been noticed in the text such an
approach is equivalent to the relaxation time approximation

_ @ 28) (see, for example, Eq13.5.6 of Ref.[18]) and, of course,
M g3’ an improved kinetic approach, in which stationary solutions

arise naturally, would be required. In the same way, Egs.
The important consequence of this relation is that it predict$23), (24), assume that an effective shape of the nematic
that all experimental results would be described with thedomain, as shown in the Fig. 4, is a function of the order
adjust of a unique experimental parameter,The continu- parameter and, consequently, of the corresponding reduced
ous lines of Fig. 2 give the best fit obtained with=0.68. temperature. Clearly, this is ad hochypothesis that was
made with the unique purpose of giving emphasis to the
VI. FINAL REMARKS AND CONCLUSION geometry of the nematic cell. Likewise, the thermal argu-
ments leading to the power 1/3 & at Eq.(28), were intro-
Along this work we have shown that geometrical form in duced to avoid considering it as a parameter to be adjusted
which the nematic domains are aggregated to form the liquidvith the use of the experimental points. That is, that reason-
crystal cannot be ignored when the rheological properties oihg has the aim of showing that very simple arguments can
such materials are computed and the effects of such omissidse used to evaluate the term relating the shape of the nematic
are particularly important at the neighborhoods of thedomain with the temperature. Synthesizing, along the ap-
crystalline-nematic phase-transition point. Furthermore, withproach that leads to the continuous curve shown in Fig. 2
these geometrical properties the universal behavior observesbmead hochypotheses, which must be further investigated,
in the ratio between the Miesowicz coefficients could be exawere made. Nevertheless, all of them have had the objective
plained. In order to establish this universal law we have usedf revealing the importance of the geometry of the nematic
the results of the kinetic theory, some experimental datgacking to the understanding of the universalities that have

061703-7



M. SIMOES AND S. M. DOMICIANO PHYSICAL REVIEW E66, 061703 (2002

been found in the viscosities of the liquid crystals. it capable to describe correctly the universality that we have

Finally, let us observe that in the last few years a set oflescribed above? Does it give correct descriptions of the
results has been published in which the viscosity of the nemrematic viscosities at the neighborhoods of the nematic-
atic materials has been calculated using some interestingrystalline transition? As such approach is essentially geo-
geometrical arguments in which through an affine transformetric, it is hoped that it could help us in the research sug-

mation the viscosities of a perfect aligned nematic fluid comyested by this paper and form the subject of a further study.
posed by ellipsoidal domains are mapped on the viscosity (;?

a fluid of spherical domaing35,36. Afterwards, a prescrip-
tion of how to associate this perfect aligned nematic fluid
with the viscosity of a real fluid was suggested. Due to the
nature of such approach, some interesting questions can be The financial support of the Conselho Nacional de Desen-
formulated about the interconnection between these resulilvimento Cientiico e Tecnolgico (CNPg and Fundaao

and the ones that achieved along this paper. For example, Araucaia is acknowledged.
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